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Enumerating Arithmetical Structures on

type & Graphs

Alexander Vetter

We explore the enumeration results of arithmetical structures on graphs. We present the known results of the
enumeration of arithmetical structures on path graphs, cycle graphs, bidents, complete graphs, and star graphs. We

then provide a new enumeration result of the number of arithmetical structures on Dynkin graphs of type E.

1 Introduction

This article is about the enumeration of
arithmetical structures on different types of
graphs. These arithmetical structures are
generalizations of the Laplacian matrix of a
graph and their sandpile groups. We start by
recalling some definitions.

Let Gbe a connected graph with vertex set V =
Uy, .., Up, D the diagonal matrix D = (d;)l-,
where each d; is the degree of v;, and A the
adjacency matrix of G. The Laplacian matrix of
GisL =D —A, hasrankn — 1, and it is a quick
exercise to check that the kernel of D — A is
generated by the all-ones vector r = (1)i,,
thatis, .- r = 0, (Section 2; 2). Thinking of the
matrix L as a linear transformation from Z™ —
Z", it has been shown that the co-kernel

Z™ /Im L has the form Z @ K(G), where K(G)
is a finite abelian group called the critical group
of G, sandpile group of G or the Jacobian of G,
(Theorem 4.2; 2).

Arithmetical structures on graphs are
generalizations of the phenomenon just
described. An arithmetical structure on a graph
G is a pair of vectors (d, r) with entries in Z,
such that r is a generator of the kernel of the
matrix L = D — A, where D is a diagonal matrix
with entries given by the vector d and A is the
adjacency matrix of G. Thatis, L -r = (D — A) -
r = 0. In other words, we tweak the definition
of the Laplacian L by allowing d to be any
vector with positive entries and look for a
generator of the kernel of L with positive
entries (if one exists). Note that for any
arithmetical structure (d, r), the pair (d’,r"),
where 1’ is any positive multiple of r, is also an
arithmetical structure as r’ would also be in the
kernel of L. In this sense, arithmetical structures
come in equivalence classes, and we usually
only consider the representative (d, r) where
the ged of the entries of r is one.

In a seminal paper, Lorenzini studies
arithmetical structures, which appeared in his
research as a particular intersection of matrices

when studying degenerating curves in algebraic
geometry. He showed that for any graph, the
number of equivalence classes of (d, r) is finite
(5). Later, in 2015, a group of mathematicians
working on the “Sandpile Groups” workshop in
Casa Matematica in Oaxaca, MX studied and
enumerated the arithmetical structures on path
graphs and cycles graphs (3). Shortly after, a
group of researchers of the REUF program at
ICERM, studied arithmetical structures on
Dynkin graphs of type D (1).

The purpose of this paper is to give an
accessible summary of the known results
regarding the enumeration of arithmetical
structures on paths, cycles, and Dynkin graphs
of type D and provide original results about the
enumeration of arithmetical structures on a
family of graphs &,, of type E. The main original
result presented in this paper is the following.

Theorem 4.2.19. The number of arithmetical
structures on £, is

|Arith(E,)| = 2|Arith(D,_,)| +
|Arith(P,_1)| — 2|Arith(P,_,)| +
S s B(n—4,n—m)|SArith(E,,)].

The paper is organized as follows. In Section 2,
we provide background on graphs and
arithmetical structures. In Section 3, we discuss
the known results about the enumeration of
arithmetical structures on path graphs, cycle
graphs, type D graphs (bidents), complete
graphs, and star graphs. In Section 4, we
provide new research on a family of graphs
called &,, graphs (extensions of Dynkin graphs
of type E) and derive a formula for the number
of arithmetical structures on &, in terms of the
number of arithmetical structures on path
graphs and bidents, as well as the number of
smooth arithmetical structures on &, for 4 <
m<n.

2 Background: Graphs and Arithmetical
Structures

We begin by providing background about

graphs. We then turn to our main description of

arithmetical structures.
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2.1 Graphs

We begin with some basic definitions. Let IV be
a set of vertices and let £ be a set of edges
between certain pairs of vertices. Then, we
define a graph & to be the pair ¢ = (V,E). We
say G is connected if there is a path between
any two vertices in G, undirected if the edges of
G have no direction, and we say G is loop-free if
there do not exist edges from any vertex to
itself. We say two vertices of G are adjacent if
they share an edge. The degree of a vertex v €
I/ is the number of vertices adjacent to v.

For our purposes, we only consider graphs that
are connected, undirected, and loop-free
throughout. We now provide examples of the
main graphs we consider in this paper.

Example 2.1.1. In Figure 1, we depict the path
graph P, consisting of n vertices v, ..., v, such
that v; is adjacentto v; ., fori €{1,..,n—1}

® @ . [ ]
V1 U2 Un

Figure 1: Path Graph P,, with n vertices
connected by the edges as indicated.

In Figure 2, we show the graph €,, which
consists of n vertices vy, ..., ¥, such that v; is
adjacent to vy, fori € {1,2, ..., n} where
indices are taken modulo n.

9

vy w3
e

Vn { V4

Up—1 @

Figure 2: Cycle Graph C,, with n vertices
connected by the edges as indicated.

In Figure 3, we depict the graph D,,, also
denoted as a bident graph, consisting of n =

£ + 3 vertices vy, v, Vg, V4, ..., Vg such that v; is
adjacentto vy fori € {0,1,..,£—1},and v,
is adjacent to each of v, and 2.

L‘y
Figure 3: Bident Graph D,, with n vertices
connected by the edges as indicated.

In Figure 4, we depict the graph &, consisting of
n = £ + 4 vertices v, Ty, Uy, Vg, Uy, e, Vg SUCh
that v; is adjacent to v;,, fori € {0,1,..,¥—
1}, vy is adjacent to each of v, and v, and v, is

adjacent to v,.

Vy

e H
Vy (& vo U1 Vp_1 (7
Figure 4: Type E Graph £, with n vertices
connected by the edges as indicated.

2.2 Arithmetical Structures

We first introduce some necessary background
on how to describe an arithmetical structure on
a graph. Letd = (d,,d,, ++,d,) be any vector
with d; € R. Define diag(d), to be a diagonal
matrix, i.e., diag(d) = (eij), where ¢; = d;
and for i # j, e;; = 0. For example, ford =
(1,4,1,4,1,4),

diag(d) =

o C O o
(=T I e R A ]
oo R oo
[==Tew R e P o i e |
o= o oo o
B O O O OO

Let G be a graph with n vertices vy, ... v,,. We
set ¢;; = 1if v; is adjacent to v; and ¢;; = 0
otherwise. We define the adjacency matrix of
Gtobe A= (CU-). (Note that ¢;; =0 as G is
loop-free.) For example, the adjacency matrix A
for € (see Figure 2) is:
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=S O O = O
(=Tl =
SO R Ok O
(=T = = =]
R o PRk oo
[T R o B B

We are now ready to define an arithmetical
structure.

Definition 2.2.1. An arithmetical structure on a
graph G is a pair of positive integer vectors

(d, r) along with the adjacency matrix of &
denoted as A such that:

1) (diag(d)—A4) -r=0.

At times we will refer to (d, r) as an
arithmetical r-structure or an arithmetical d-
structure on G.

Note that when d is the vector of vertex
degrees of G, thenr = (1,1, ...,1) defines an
arithmetical structure called the Laplacian
arithmetical structure. Ourinterestis counting
the number of pairs (d,r) that form an
arithmetical structure on a particular graph G.
As earlier stated, this number would be infinite
because once a pair (d, r) satisfies Equation 1,
then any pair (d, k - r), where & is a positive
integer, will also satisfy the equation.
Traditionally, mathematicians have imposed the
condition that the entries of the r vector must
be relatively prime, that is, there does not exist
k > 1 such that k|r; for all i. An alternative
approach is to define the following relation on
the set of structures, (d, r) ~ (d',r")ifd =d’
and eitherr =k -r' orr’ = k - r for some
positive integer k. It is not hard to show that
the transitive closure of ~ is an equivalence
relation. Thus, we divide the structures into
equivalence classes. Each equivalence class
contains a unique pair (d, ) with the entries of
r being relatively prime. We call such r vectors
primitives.

We let Arith(G) be the set of all equivalence
classes of arithmetical structures on . Thus, we
can count |Arith(G)| by counting the pairs

(d, r) such that r is primitive. A priori, it is not
clear that |Arith(G)| is finite, however

Lorenzini proved this is the case in (5). We recall
his result in Lemma 3.0.1.

Let us analyze what an arithmetical structure is
at a local level. Suppose (d, r) is an arithmetical
structure on a graph G. Then, (diag(d) — 4) -
r = Oimplies

ty —thy vt Ty 51 0
—fz1 tdy o T {2y _ (0
—Gpy —Oyy s T 0

Thus, we can rewrite the above as a set of
equations:

2) rd; = Z a;1 forl<i<n.
jelnl\{i}

Remark 2.2.2. Using Equation 2 one can show
that (d, r) is an arithmetical structure if and
only if for every vertex v;, the label r; divides
the sum of the 1;'s on adjacent vertices.

2.3  Examples of Arithmetical Structures
We first recall that for a graph G, setting d
equal to the vector of vertex degrees in & and

r = (1,1, ...,1) always yield an arithmetical
structure {d,r)on G, and (diag{d) — A) = Lis
known as the Laplacian of G. Thus, we call (d, )
the Laplacian arithmetical structure. We now
give three additional examples of arithmetical
structures.

Example 2.3.1. We consider an arithmetical
structure on the graph P, shown in Figure 5. If
d=(2,1,31)and r = (1,2,1,1), then (d, 1) is
an arithmetical structure on P, since

(diag(d) —4) ‘r =0is

2 -1 0 0 1 0
-1 1 -1 o0 2y (o
0 -1 3 —-1/i1/ 10
0 0 -1 1 1 0
[ @ L 4 ]
21 (L2 G111

Figure 5: An arithmetical structure on the path
graph P,, with each vertex v; labeled by (d;, 7).

Example 2.3.2. We consider an arithmetical
structure on the cycle graph €, shown in Figure
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6.1Fd = (1,4, 1,4 1,4) and r = (2,1,2,1,2,1),
then (d, 1) is an arithmetical structure on G
since (diag(d) — A4) -r = 0is

1 -1 0 0 0 -1 2 0
-1 4 -1 0 0 0 1 0
0 -1 1 -1 0 0 21_|0
0 0 -1 4 -1 0 1|7 of
0 0 0o -1 1 -1 2 0
-1 0 0 0 -1 4 1 0

(1.2) (4,1)

Pl

(41) & e (1,

\\ /

>4

(1.2) (4,1)

Figure 6: An arithmetical structure on the cycle
graph C,, with each vertex v; labeled by (d;, ;).

Example 2.3.3. We consider an arithmetical
structure on the Dynkin graph D5 shown in
Figure 7. fd = (2,1,2,3,1) and r = (1,2,2,1,1),
then (d, r) is an arithmetical structure on D¢
since (diag(d) — A4) -r = 0is

2 0o -1 0 0 1 0
0 1 -1 0 0 2 0
-1 -1 2 -1 0 21=1]0
0 0 -1 3 -1 1 0
0 0 0 -1 1 1 0
e
Wias =
(2,1 \\\\
~12,2) (3.1) (1,1)
L
(1,2)

Figure 7: An arithmetical structure on the Dynkin
graph D, with each vertex v; labeled by (d;, ;).

3 Previous work on Arithmetical
Structures
In his seminal paper Arithmetical Graphs (5),
Lorenzini studied arithmetical structures, which
appeared in his research as a particular
intersection of matrices when studying
degenerating curves in algebraic geometry. The
following result has motivated combinatorialists
to study the enumeration of arithmetical
structures.

Lemma 3.0.1. (Lemma 1.6; 5) There are only
finitely many equivalence classes of arithmetical
structures on a given graph.

The study of arithmetical structures on path
graphs P,, cycle graphs C,;, bident graphs D,,,
complete graphs K, and star graphs 5, has led
to interesting combinatorial results, some of
which involve the quite-famous Catalan
nummbers, binomial coefficients, and Bell
numbers, as well as Egyptian fractions.

3.1 Results on Path Graphs

In (3), Braun et al. enumerate Arith(G) when G
is the path graph P, on n vertices and when &
is the cycle graph C,; on n vertices. Before going
into the results, consider what an arithmetical
structure looks like on a path graph in terms of
matrices as described in Equation 2. Let (d, r)

define an arithmetical structure on P,, then
(diag(d) —4) -r = 0is

d -1 0 0 0 n 0
1 d ~ 0 0 T 0
0 -1 ~ =1 0 ;=Y
0 0  dyp, —1]{m. 0
0 0 0 -1 dJ/\m 8

Thus, we can rewrite the above as a series of
equations:
nd, =1
rid; =1_;+rforl<i<n
rndn =Th-1-
Now, we begin discussing the results with the
above matrix and equations in mind.

For an arithmetical r-structure, let us define
r(1) =#{i|n, =1L

Thus r(1) counts the number of times 1

appears in the vector r. We now turn to one of

the main results in (3).

Theorem 3.1.1 (Theorem 3; 3). The number of
arithmetical structures on 7, is the Catalan
2n—-2
n—1
number of arithmetical r-structures with
r(1) = 2 is the Catalan number C,,_,.

1
number C,,_; = ;( ) Moreover, the
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3.2 Results on Cycles Graphs

We now proceed to enumerating the
arithmetical structures on cycle graphs. Before
going into detail, consider what an arithmetical
structure looks like on a cycle graph in terms of
matrices, as discussed in Equation 2. Let (d, 1)
define an arithmetical structure on C,,, then
(diag(d) —4) ‘r=0is

d -1 0 0 -1\ /n 0
1 d, ~ 0 o0\ n 0
0 -1 % -1 0 . 8
0 0 dn—l -1 Th—1 0
1 0 0 -1 d/\m ;

As we can see, this is very similar to the matrix
of the path graph. In fact, the only differences
appear in the first and last rows of the matrix.
As before, we obtain an exact formula for the
number of arithmetical structures on a cycle

graph. We note that ((;)) counts all multisets

of size k from a set of n distinct objects.

Theorem3.2.1. let1 <k <nand¥=n-k.
Then
#{(d,r) € Arith(C,) | (1) =k} =
(( n )): (Zn—k—l)
n—k n—k /'
In particular, if we sum over all k, we get the
following total arithmetical structures on C,,:

|Arith(€p)| = Xi=1 ((nfk)) =Zi% ((;)) -
(GH) BT}

3.3 Results on Complete Graphs

The complete graph X, has n vertices, each
pair of which is adjacent. Equivalently, K,
consists of n vertices vy, ..., ¥, such that there
exists an edge between v; and v; forevery 1 <
i < j =< n.In, we depict the complete graph X,.

g \
N
N
v3

Uy 3
Figure 8: Complete Graph, K,, with 4 vertices
connected by the edges as indicated.

Before going into the results, consider what an
arithmetical structure looks like on a complete
graph in terms of matrices as described in
Equation 2. Let (d, r) define an arithmetical
structure on K, then (diag(d) — A) -r =0is

d -1 -1 -1 -1\ /n 4
1 d ~ -1 -1\[ n 0
. =1 % =T =4 N - g
-1 -1 =~ dyq —1/J\ - 0
-1 -1 -1 -1 d,/ \m 0
Thus, we can rewrite the above as a set of
equations:
nd; = Z rforl<i<n
Jjelni
Now, note the following observation:
i=17i
1=%;
1 2 n
= + + o4
o rir 2ian ?:1]7;1'
= : +ot z
n+ Zie[n]\l 41 n+ Zie[n]\n r
_ 4! + 2 bt T
Tnt+nd, 1 And,  +nd,
SN SN S -
rnd,+1) n(d,+1) r,d,+1)
1 1
- + +--+ .
di+1 d,+1 dy+1

The last line tells us we are looking for a setof n
fractions whose sum is 1. These are known as
Egyptian Fraction representations of 1. One can
show this process is reversible and from an
Egyptian Fraction we can create an arithmetical
structure. In short, the number of arithmetical
structures on K, is the number of Egyptian
Fraction representations of 1. There is no
known formula for these objects; for more
information about them see OEIS Sequence
A002967 (4). Now, we will see that this is
closely related to arithmetical structures on star
graphs.

3.4 Results on Star Graphs

The star graph, §,,, has n vertices such that one
vertex has an edge to each of the other vertices.
Equivalently, 8, consists of vertices ¥4, ..., ¥y,
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such that there exists an edge from 7; to v; for
2 £ i £ n. In Figure 9, we show the graph 5.

Us Vg

Figure 9: Star Graph, s, with 5 vertices connected by the
edges as indicated.

Before proceeding, we consider what an
arithmetical structure looks like on a star graph
in terms of matrices as described in Equation 2.
Let (d, r) define an arithmetical structure on
Sn41 with central vertex vy (why weusen + 1
vertices will be clear shortly), then

(diag(d) —4) -r=0is

dy -1 -1 -1 -1\ /1 0
1 d ~ 0 0\l mn g
-1 0 ~ 0 0 N g
-1 0 W odypq O -1

-1 0 0 0 d,/\"m g

Thus, we can rewrite the above as a series of

equations:
n

rodp = Z L4
i=1
rnd; =rnpforl<i<n.
Now, note the following observation:

n n n
=Y n=DT=n)
W= ) = ) —=T / =
Lt Laid; Lady

i=1 i=1 i=1

1 ;
?=1d—. The last line tells us we are
i

hence d; =
looking for a set of n fractions whose sum is d,.
These are known as Egyptian Fraction
representations of d,. As with Egiptian
Fractions of 1, we do not have a close formula

for these numbers.

3.5 Results on Bidents

Archer et al. (1) examine arithmetical structures
on bidents, which are paths with a fork at the
end. We label the fork vertices v, and v, the
vertex adjacent to both v, and v, is labeled v,
and the remaining vertices are labeled in order
V1, .., Vg, see Figure 10.

Figure 10: Bident with labeled vertices v,, vy, Vo, o, Ut

Before going into the results, consider what an
arithmetical structure looks like on a bident in
terms of matrices as done in Equation Z. Let
(d, r) define an arithmetical structure on D,,,
then (diag(d) —A) ‘T =0is

d. 0 -1 0 0 0 i 0
0 4, -1 0 0 0 7y 0
-1 -1 d -1 0 0 | _10
0 0 -1 d =~ 0 O B N
H H -1 Th-a 0
0 0 0 0 -1 d,.3/ ‘-3 0

Now, we can translate this into the following

equations:
3) dxrx =To
dyr, =1

dorp =71 + 1, + 11
diry =11+ fori€e{l2, ..,n—4}
p—3tn-3 = Tn-a-

Definition 3.5.1. For n = 4, we call an
arithmetical structure (d, r) on D,, smooth if
dy,dy,dy, dy, .., dp = 2. We denote by
SArith(D,,) the set of all smooth arithmetical
structures in Arith(D,,) where D,, is the bident
graph with n vertices.

We are now ready to present one of the main
theorems in (1).
Theorem 3.5.2 (Theorem 2.12; 1). The number
of arithmetical structures on D,, is
|Arith(D,,)|
=2B(n—-3,n—-3)
n

) B(=3,~m)(SArith(Dy)| +2),
m=4
where B(n, k) is the Ballot number
B(n, k) = =22 (4R,

n+1 n

Thus, the problem is reduced to counting the
number of smooth arithmetical structures on
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D,,. In particular, Archer et al. show that the
sequence {|SArith(D,, )|}, exhibits cubic
growth.

Theorem 3.5.3. (Theorem 4.1; 1). Let
|SArith(D,,)| be the number of smooth
arithmetical structures on D,,. Then,

RIS S Arith(D,,))|

< §n3 +§n — 84 (2n? — 4n + 2)log(n — 3).

Directly from (1), in Figure 11, we present a
graph showing the number of smooth
arithmetical structures for n = {4,5, ...,50},
with the bounds as in Theorem 3.5.3 and the
best cubic polynomial approximating the data.

10 20 30 a0 50

Figure 11: The blue graphs are the upper and lower bounds
of the number of smooth arithmetical structures on D,
provided by Theorem 3.5.3. The points (n, |SArith(D,}])
are plotted with the best-fitting cubic polynomial
approximating these data (Figure 6,1).

4 Arithmetical Structures on type E
Graphs

We now consider a new set of graphs related to

type E Dynkin diagrams. For this reason, these

graphs on n vertices will be denoted &,,.

In Figure 12, we depict the type E graph &,

consisting of n vertices v, vy, ¥, Vg ..., Up

where £ = n — 4, such that v; and v;,, are

adjacent fori € {1,...,£ — 1}, v, is adjacent to

both v, and v,, and v, is adjacent to v,.

Uy

L L ® g3 o—o
Vg P Yo U1 Ve—1 V¢

Figure 12: Type E Graph £, on n edges as indicated.

We note that we allow n = 4, in which case we
have a path on 4 vertices. We also note for n =
5, we have a bident on 5 vertices.

Before going into the results, consider what an
arithmetical structure looks like on an &,, graph
in terms of matrices as done in Equation 2. Let
(d, r) define an arithmetical structure on &,
(diag(d) — A) - T = O where (diag(d) —A4) - r
is

d. -1 0 0 0 0N\ 7

-1 d; 0 -1 0 0\fr
0 0 d -1 0 o ([
0 -1 -1 dy -1 0[]
0 0 0 -1 4, 0

E i : £ -1
0 0 0 0 0 =1 dy e
Now, we can translate (diag(d) —4) - r=10
into the following equations:
4) dely =1,
d,r, =n.+1,
dinp=1,+n+n
dyr, =1,
diry =r;_q 1y forie{l,2,..,£—1}
d{?‘{ =Tp-1-

4.1 Subdivision and Smoothing for £,
graphs
We now consider the operations of smoothing
and subdivision on &, analogous to the
processes in (3). In fact, we will define a
smoothing and subdividing operation on
vertices of degree one and two in £, exactly in
the same way Archer et al. defined smoothing
and subdivision for D,, in (1). Let Arith(€,) be
the set of arithmetical structure on £,,. Let us
first consider the process of smoothing. letn =
4 and let (d,r) € Arith(E,). If d; = 1 for some
i€{12,..,£— 1}, then define vectors d"and r’
of length n — 1 as follows:
d; ifj € {x,v,2,0,1,...,i — 2}
dip1— 1, ifj =1
djr1, ifjefi+1,i+2,..,£-1}
and
, T, ifj €{x,v,2,01,..,i — 1}
= {er, ifj€fi,i+1,..,£—1}
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As one can easily check, (d’,1") is an
arithmetical structure on &€, _;. We also note
that we can extend this smoothing process to
the degree 1 verticesin £, butonly ifd; = 1
where j = x,y, or £. Further, we can extend
this to a smoothing of the degree 2 vertex v, if
d, = 1. We would decrease d,. and d, by one,
shift indices as we did above, and keep the »
values untouched other than deleting 7;,. The
smoothed structure is an arithmetical structure
on a bident. For an example of the smoothing
operation please refer to Example 4.1.1.

Now, we consider the process of subdivisian.
We can do this on the tail of £,, by which we
mean the path from v to 1, including at the
end of the tail. Letn = 4 and let (d, 1) €
Arith(€,). For1 < i < £, define d’ and " of
length 2 + 1 as follows:

d;, ifj €{x¥y201,..,i—2}
d+1,  ifj=i-1
d]f = 1, lfj‘ = l
d;_1+1, ifj=i+1

di_1, ifje{i+1,i+2,..,£+1}
r,  ifj€{x,y,201,..,i-1}

r' = rj71 + r., lfj =it

Ti-1, ifjefi+1,.,£+1}
Now, ifi = £ + 1, define d’ and r’ of length n +
1 as follows:

d; ifj € {x,v,201,..,£—1},
di=4d;+1, ifj="*

1, ifj=4+1

Tin
?}_; - i
-1

Then one can check that (d’,r") isan
arithmetical structure on &, , ;. The subdivision
operation that is inverse to smoothing at v,,
begins with an arithmetical structure on a path
graph and adds a new vertex 17, connecting it
to v, by a single edge and settingry, =1y, dj, =
1, and dj = dy + 1 while leaving the other r-
values and d-values unchanged. We call this

and
itjef{xyz01,..,%},
ifj =4+ 1

operation subdivision at position y. We can
similarly define subdivision at position x. More
generally, we could define a subdivision
operation on an arithmetical structure (d, r) on
any graph by adding a new vertex v,
connecting it by a single edge to any other
vertex Uy in the graph, and setting ry, = 1y,

dy = 1,and dy = dq + 1 while leaving the
other r-values and d-values unchanged.

Example 4.2.1. Suppose we have the following
arithmetical structure on €;where we label
vertex v with (d,, ;). As noted in Remark 2.2.2,
each value %, must divide the sum of the r-

values of the adjacent vertices.
(5,1)

& L L 4 L ]
(2,1) (3,2) (2,5 (1,7 (4,2) (2,1)
Since we have a vertex with d value 1, we can
apply the smoothing operation to delete this
vertex and get the following arithmetical
structure

(5,1)

® L @ 9

(2,1) (3,2) (1,5) (3,2) (2,1)
Note that the d values changed according to
the formulas in Section 4.1. The inverse process,
where we add a vertex in between two previous
vertices and set the r value to be the sum of the
r values of the two neighbors is the subdivision
process explained in Section 4.1.

4.2  Results for type €, Graphs

Using results from bidents as motivation, we
now give results for type &, graphs. We
present some lemmas that will help us
enumerate arithmetical structureson &,,, in
terms of arithmetical structures on paths,
bidents and “partially smooth structures” on
&, graphs, leading to Theorem 4.2.10. This will
then lead to our main theorem of the section,
Theorem 4.2.19.
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Lemma 4.2.1. The number of arithmetical
structures on &,, with d, = 1 (or equivalently
1 = 1,) is |Arith(D,_1)|.

Proof. We prove this by showing there exists a
bijection between structures on &,,, graphs such
thatd, = 1and structures on D,,_;. First,
suppose we have an arithmetical structure
(d,r) on &, such that d,, = 1. Thus, we can
smooth at v,. This gives us an arithmetical
structure on D,,_;. Now, suppose (d’,r") is an
arithmetical structure on D,_,. Then, we can
subdivide at v, (using the notation from Figure
10). This produces an arithmetical structure on
&, such that our new d,, = 1 (and our previous
v, now becomes 1,). Combining, we see that
these two processes are inverses of each other.
This establishes our bijection. m

Lemma 4.2.2. The number of arithmetical
structures on &, with d, = 1 (or equivalently
r, =1 +rp)is |[Arith(D,,_,)|.

Proof. We will show that there is a bijection
between the arithmetical structures on &, such
thatd, = 1 and arithmetical structures on
D,._1. First, let (d,r) be an arithmetical
structure on &, such that d, = 1. Thus, we can
smooth at v, and obtain an arithmetical
structure on D,,_;. Now, suppose (d’,r") is an
arithmetical structure on D,_,. Then, we can
subdivide between v, and v, (using the
notation from Figure 10) and call the new
vertex v,. This gives us an arithmetical structure
on &,, such that d, = 1. Combining, we see
that these two processes are inverses of each
other. This establishes our bijection. m

Lemma 4.2.3. The number of arithmetical
structures on &, such thatd,, = 1 (or
equivalently 1, = rp) is Arith(|P,_1]).

Proof. We will show that there is a bijection
between the arithmetical structures on &,, such
that d,, = 1 and arithmetical structures on
P,,_1. First, let (d, r) be an arithmetical
structure on &, such that d,, = 1. Then, we can

smooth at 1,. Thus, we get an arithmetical
structure on P,,_;. Now, suppose (d’,r") is an
arithmetical structure on P,,_;, where we
denote the vertices of P,,_; as v, v, 17y, ***, Vp,
where £ = n — 4. Then, we can subdivide at v,
and call the new vertex v,,. This will produce an
arithmetical structure on £, such thatd,, = 1.
Combining, we see that these two processes are
clearly inverses of each other. This establishes
our bijection. m

Lemma 4.2.4. There do notexist any
arithmetical structures on &, withd, = d, = 1.

Proof. In this proof, we recall the equations
found in Equations 4. If d, = 1, thenr, =1,
Butd,r, =r.+ 1, andifd, =1, thenr, =

Ty + 1y, 0r 1, =1, + 1. This implies thatr, = 0,
which is a contradiction since the r vector has
strictly positive entries by definition. m

We now note the following corollary which will
become relevant later.

Corollary 4.2.5. There do not exist any

arithmetical structures on &, such that d,, =
d,=d, =1

Proof. This follows from Lemma 4.2.4. m

We now proceed to study arithmetical
structures where multiple d-values are 1.

Lemma 4.2.6. The number of arithmetical
structures on &, withd, = landd, = 1{or
equivalently r, =1, and 13, = 1) is
Arith(|P,_5)).

Proof. We will show that there is a bijection
between the arithmetical structures on &,, such
thatd, = d, = 1 and arithmetical structures
on P, _,. First, let (d, ¥) be an arithmetical
structure on &, such thatd, = d;, = 1. Now,
we can first smooth at v,.. Note that this does
not affect d,,. Now, we can smooth at v,. This
produces an arithmetical structure on 7;,_,.
Now, suppose (d’, ') is an arithmetical
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structure on P,,_,, where we denote the
vertices of P,_, as v, vy, **, Vp, where £ = n —
4. Then, we can subdivide at vertex v, and call
the new vertex v, to get an arithmetical
structure on P, _; such thatd,, = 1. Now,
subdivide at vertex v and call the new vertex
7, to get an arithmetical structure on &, such
that d, = d,, = 1. Combining, we see that
these two processes are clearly inverses of each
other. This establishes our bijection. m

Lemma 4.2.7. The number of arithmetical
structures on &, such thatd, = landd, =1
(or equivalently r, = 1, + 1y and 1y, =1y is
|Arith(P,_,)|.

Proof. We will show that there is a bijection
between the arithmetical structures on &, such
that d, = d,, = 1 and arithmetical structures
on P, _,. First, let (d, r) be an arithmetical
structure on &, such thatd, = d,, = 1. Now,
we can first smooth at v,. Note that this does
not affect dy. Now, we can smooth at v,,. This
produces an arithmetical structure on P;,_,.
Now, suppose (d’, 1) is an arithmetical
structure on P,,_,, where we denote the
vertices of P,_, as v, vy, -+, vy, where £ = n —
4. Then, we can subdivide between v, and
vpand call the new vertex v, to get an
arithmetical structure on P,,_;such thatd, = 1.
Now, subdivide at vertex v, and call the new
vertex 1y, to get an arithmetical structure on &,
such that d, = d,, = 1. Combining, we see that
these two processes are clearly inverses of each
other. This establishes our bijection. m

The previous lemmas give us a way to
characterize the arithmetical structureson &,
such that at least one of d,, d,,, and d,, is equal
to 1. The following definition characterizes all
remaining possibilities.

Definition 4.2.8. We call an arithmetical
structure on &,, partially smooth if none of
dy, d,, and d, equals 1. We denote the set of
such partially smooth structures as
PSArith(E,).

Definition 4.2.9. We call an arithmetical
structure on £, smoothifd; = 2 foralli = 1.

We denote the set of such smooth structures as
SArith(€,)).

We will later show that the conditions in
Definition 4.2.9 imply 1y > 1, > -+ > 1y (see
Lemma 4.2.13). We now enumerate
arithmetical structures of £,, in terms of
bidents, paths, and partially smooth structures
oné&,,.

Theorem 4.2.10. The number of arithmetical
structures on &,, is the following:
|Arith(€,)| = 2|Arith(D,_,)|
+ |Arith(P,_,)|
— 2|Arith(P,_5)|
+ |PSArith(&,)].

Proof. We use the lemmas we developed in this
section to prove this result. First, consider
arithmetical structures such that d,, = 1. By
Lemma 4.2.1, the number of such arithmetical
structures is |Arith(D,,_,)|. Next, consider
arithmetical structures such that d, = 1. By
Lemma 4.2.2, the number of such arithmetical
structures is |Arith(D,,_, )|. Next, consider
arithmetical structures such that d,, = 1. By
Lemma 4.2.3, the number of such arithmetical
structures is [Arith (P, _;)|. Now, these sets do
not necessarily have an empty intersection. By
Lemma 4.2.4, the intersection of the first two is
the empty set. Further, by Corollary 4.2.5, the
intersection of all 3 is the empty set. By Lemma
4.2.6, the number of arithmetical structures
such thatd, = d,, = 1is |Arith(P,_,)|. By
Lemma 4.2.7, the number of arithmetical
structures such thatd, = d,, = 1is
|Arith(P,_5)|. Thus, the total number of
arithmetical structures such that at least one of
dy, dy, and d;, equals 1is equal to:
2|Arith(D,_,)| + |Arith(P,_,)| —
2|Arith(P,_5)|.

Now, note that these arithmetical structures on
£, we just described and arithmetical
structures on PSArith(&E,) have an empty
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intersection since, by definition, the values of
dy, d,, and d, are greater than ane in partially
smooth structures. Further, all arithmetical
structures on &,, fall into one of those two
categories. Thus,
|Arith(E,)| = 2|Arith(D,_,)|

+ |Arith(Pp_1)|

— 2|Arith(P,_,)|

+ |PSArith(E,)|. m

We now work our way toward counting partially
smooth structures.

Definition 4.2.11. If an arithmetical structure
(d’,r") on &, (for m < n) can be obtained from
an arithmetical structure (d,r)on £, by a
sequence of smoothing operations, then we say
(d’,r") is an ancestor of (d, r). If an arithmetical
structure (d, r) on &, can be obtained from an
arithmetical structure (d’,r") on &, (form < n)
by a sequence of subdivision operations, then
we say (d’, 1) is a descendant of (d, r).

In particular, (d’,r") is a descendant of (d, r) if
and only if (d, r) is an ancestor of (d’, 1) .

Lemma 4.2.12. Every partially smooth
arithmetical structure on &, is either smooth or
has a unique smooth ancestor of one of the
following graphs:
a) An¢&,, graph forsomem = 5,
b) A path on four vertices (which we also
denote as £,).

Proof. Let (d, r) be a partially smooth
arithmetical structure on &,,. In particular, this
means d,, d,, and d, are greater than 1. If

(d, r) is not smooth, then d; = 1 forsome i €
{1, ..., £}. Then, perform a smoothing operation
at v;. Repeat this process until we have an
arithmetical structure, (d’,r") on &,,_; where s
is the number of times we perform a smoothing
operation, such thatd;" > 1foralli = 1.
During each smoothing, we eliminate a vertex
v; such thatr;_,, 7y, ; <1y (sinced; = 1). This
means our remainingr’ = (1, 1y, .., 1p_s) is
the maximal decreasing subsequence of

Ta, Ty, ..., ¥p because the entries of r do not

change aside from the deleted elements.
Hence, the vector 1’ is unique.

Once this process terminates, only dy may
equal 1, which we allow. Thus, at this point, we
cannot perform a smoothing operation. We
note that we end with an &, graph, where m =
4, as desired. m

We now generalize Lemma 2.1 in (1) to &,
graphs.

Lemma 4.2.13. Letn > 5 and (d,r) be an
arithmetical structure on &£,,. The following are
equivalent;
a) d;=2forallie{1,23,..,4}
by ro>nr >->r_>10
) —NH2N —HR22hH 12
Te_1— 1y > 0.

Proof. We first show that a) implies c). Using our
matrix description from Equation 3, we see that
ifi € {1, ,‘E— 1}, then diri =Ti_1 + Yit1s
which implies d;r; — r; = r;_; + 17,4 — 7. Thus,
(di — 1)'.’"{ — Ty = By — Ty, but since di = 2,
it follows thatr;_y — r; = r; — r;;4. Thus, we
see that

Yo— N 21 — Ty 2 Z2Tp_p — Vo1 = Tp_q1 —Tp.
We also know thatr,_; = d,r, = 2ry, hence
Ye_q1 —Tp > 0.

Now we show that c) implies b). Since r;_; —
r; > 0foralli € {1, ..., £}, we see that
o > 5] Dosse > Ye—1 > e,

Now we show that b) implies a). Leti €

{1, ..,£— 1}, and since r; < r;_;, we must have
r; <1j_q + 1741 = d;1;. But we know d; is an
integer,so d; = 2 foralli € {1, ...,£—1}.
Further, 1p < rp_y = dyty, hence,d; = 2. m

We now establish results analogous to those
found for D,, in Section 2.3 of (1). Let (d°,r%)
be an arithmetical structure on &,, withm < n.

Definition 4.2.14. For n = 4, a sequence of
positive integers b = (by, ..., b,_,, ) is a valid
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subdivision sequence for (d°, r?) if its entries
satisfy 1< b, <m—4+41.

We can inductively define an arithmetical
structure Sub((do, r?), b) on&,. Let (di, ri) be
the arithmetical structure on &, ; after
subdividing at v, _; on the arithmetical
structure (d'~1,r'"1) on &,,,; ;. We note that
this is possible because 1 < b, <m —4+i,s0
on the i*" step, the tail length ism — 4 — i, and
we are always allowed to subdivide from
position 1 (vertex v,)to the end of the tail
(vertex v,,_,). Now, let

Sub((d%r°),b) = (d" ™, r"™).

Further, the descendants of (d% r") are exactly
Sub((do, r?), b) for some b.

Lemma 4.2.15. let4 < m < n,let (d°r°%) be
an arithmetical structure on &,,, and let b =
(by, o, by_sy) be a valid subdivision sequence
for (d%,r?). Suppose j is a positive integer
satisfying 1 < j < n — m with b; > b;,,. Define
b' = (b, by, byy) by

bj+11 lfl = j,
bl = b +1, ifi=j+1
b, otherwise.

Then, Sub ((d°,r°),b} = Sub((d® r?),b").

Proof. Note that this is analogous to Lemma 2.7
in (1) since subdivision only occurs on the tail of
the type E structure. m

Note that this lemma implies the order in which
we subdivide along the tail does not matter
except for when the subdivisions are adjacent
to one another. The next result is an analogue
of Proposition 14 in (3) and Lemma 2.8 in (1). It
states that we may identify each descendant of
an arithmetical structure (d° r?) by a unique
valid non-decreasing subdivision sequence.

Lemma 4.2.16. Let (d° r®) be an arithmetical
structure on &, with d? = 2 forevery i €
{1,2,...,m — 4}. Then there is a bijection
between arithmetical structures on £;, that are

descendants of (d 0, rU) and valid subdivision
sequences b = (by, by, ..., b,_,,) that satisfy
b; < b4 foralli.

Proof. Suppose (d, r) is an arithmetical
structure on £, that is a descendant of (d% r?).
This implies (d,r) = Sub((d’, r?),b’) for some
b’ = (b1, by ) such that 1 < b <m —

4 + i for all i. Through repeated applications of
Lemma 4.2.15, we get (d,r) = Sub((do, ro),b)
for some sequence b that satisfies the claim.

We note that at each stage of subdivision, b; is
the largest value of j such that df = 1. Thus, if
we start with (d, r) and subdivide at position j,
where ] is the largest number such that d; = 1,
we recover b. This implies we have a unique
sequence for each descendant of (d% r?). m

We can use the above result to count
arithmetical structures. Before this, we need
one more result. For this purpose, let B(n, k)
denote the so-called ballot numbers, i.e.,

n—k+1m+k
B(”"‘>=n—+1( ” )-

These are a generalization of the Catalan
numbers. For more details on ballot numbers,
see (6). The next result appeared as Lemma
2.10in (1).

Lemma 4.2.17 (Lemma 2.10; 1). Fix4 < m < n.
There are B(n — 4,n — m) valid subdivision
sequences b = (by, by, ..., by_p, ) such that b; <
b;,, foralli.

Proposition 4.2,18. Letn = 4 and let

des, (G;d,r) be the number of arithmetical

structures on €, that are descendants of the

arithmetical structure (d, 1) on a given

subgraph G of £,. Then
des,(£,;d,r)=B(n—4,n—m)

for every smooth arithmetical structure (d, r)

on&, forany4 <m < n.

Proof. We appeal to Lemma 4.2.16 which gives
a bijection between arithmetical structures on
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&, that are descendants of arithmetical
structures on &, and sequences (b, ..., Bp_p)
suchthatl < b; <m—4+iand b; < b;y4 for
all i. Then, Lemma 4.2.17 applies and we geta
total of B(n — 4, n — m) such smooth
arithmetical structures. m

Since every partially smooth arithmetical
structure has a unique smooth ancestor, we can
classify each of them by their subdivision
sequences. These subdivision sequences are
thus able to help us count our total structures.
In particular, each smooth structure on a given
& produces the same number of partially
smooth structures for some n = m. Using the
previous results, we can count the number of
arithmetical structures on &, in terms of
smooth arithmetical structures on £,,,. We are
now ready to prove our main theorem.

Theorem 4.2.19. The number of arithmetical
structures on &,, is
|Arith(E,)| = 2|Arith(D,,_,)| +
|Arith(P,_,)| — 2|Arith(P,_,)| +
> _iB(n—4,n—m)|SArith(E,,)|.

Proof. In light of Theorem 4.2.10, we only need

to focus on counting partially smooth

structures. Proposition 4.2,18 gives B(n —

4,n — m) descendant arithmetical structures

for the smooth arithmetical structures on £,,,.

Thus, we obtain a total of
n_aB(n—4,n—m)|SArith(E,,)|

from these subgraphs. Substituting into

Theorem 4.2.10, we obtain the desired result. m

The sets Arith(P,,_,), Arith(P,_,), and
Arith(D,_,) have been studied in Section 3.
Thus, at this point, the problem is reduced to
counting the number of smooth arithmetical
structures on &,, foralln = 4.

4.3 A Step Toward Enumerating Smooth
Arithmetical Structures on &,

Now we focus on smooth structures, which we

divide into two categories: those where d; = 1

and those where d, # 1. Theorem 4.3.2 gives a

complete characterization of these structures.

Lemma 4.3.1. Let (d, r) be a smooth
arithmetical structure on &,, withm = 5, Then
do = lifand only ifry > 7, + . Moreover, for
a structure (d,r)on £,, dy; = 1ifand only if
nn=ntrn.

Proof. Suppose firstthat dy = 1, thenry =1, +
1, + 1 > 1, + 1. Conversely, suppose 1, >

1, + 7;. By the definition of an arithmetical
structure, ry must divide ;, + 7, + 7,501, =
—(ry + 1) mod ry. Hence, 7y = pry — (15, + 1)
for some positive integer p. Since (d, r) is
smooth, then by Lemma 4.2.13, 1, > 1, =
pPro— (ry + rz). This, together with the
assumption thatry > 1, + 7, impliesp = 1 and
rg =1 +1, + 1, Therefore, dy = 1. m

The last sentence of the lemma is a restatement
of the definition of an arithmetical structure on
a graph &,.

We now derive an equation whose parameters
we will investigate using Equations 4. Let (d,T)
be a smooth arithmetical structure (so none of
the entries of the d vector can be one except
for dy) on &,,. This means r, = kr;, for some
k = 2. Recall thatd, = 2,soletd, =g + 1,
¢ = 1. Thus,

e+ 1y =d,n, =(q+ Dkr,
hence
5) ro=(k—1+qgkr,.

We also know thatr, |1y, 1y = dy1, > 1, and
gcd(rx, ry) = 1 (otherwise our r-vector would
not be primitive). With these conditions, 7, is a
factor of (k — 1 + gk), and this factor must be
relatively prime to r,.

Theorem 4.2.3. letn = 5 and let (d,r) be a
smooth arithmetical structure on &,,. Then,

dy = 1 except for the following family of
exceptional cases:

r = (2,2k, 4 — 2,20k — 1,4k — 3,4k — 4, 2,1)
and

d=(k2,2.2.272,,2,2),
on&ypyq foranyk = 2.
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Proof. By Lemma 4.3.1, if (d, r) is a structure on
En, form = 5, we have dy = 1 ifand only if
nn>knt+n=r+n.

We split the proof in three cases. We will make
use of Equation 5.

Case 1(r, = 1): Note thatr, = kr, = k and
n =k —1+gk.Sinced,r, =ryandd, > 1,
then

rySk 12+qk=2_0.
Using this, we now claim that if 1 < k(g — 1)
thenry > r, + 1, which would imply that d, =
1. To prove the claim, note that
l<kig—1Dek<gk—-1

Sk—1+qgk < 2gk—2

kE—1+gqgk
—<gk—1

k—1+gk

Eoirak g
=r+n<n.

Ifg>=2andk =2then1<k(g—1),s0n, +

r, <n. Ifg=7T1andk =2, thenry, = 2k — 1.

Since d,1y, =1y = 2k — 1and d, > 1then

2k-1 .
B = . In this case,
3

rn=2k—-1=k+2/3k+1/3k—1
k—1

=k+

2
=k+

zZr+n,
with equality only when k = 2. By investigating
this case, we find it produces a structure on &,.
This structure is excluded from the theorem as
dgy = 1 for this structure. In particular, 1, = 1,
q = 1, and k = 2, which gives us the following
structureon &;: r=(1,2,3,1)and d =
(2,2,1,3). This finishes Case 1.
For the next two cases, since 1y = ((k -1+
qk)ry, dyr, = 1, and ged(n,13,) = 1 then the
largest possible value of 7, is (k — 1) + gk.
Note that if (gk — 1)(r;, — 1) = k were to hold
then
(gk—1D(rn,— 1=k
e gk—-Drn=zk—-1+qgk

ek -—Dn+gkr,zkn+ k- 1)+ gk

6) Sn=2ntn.

We will use this to investigate the cases when
=2

Case2 (1, = 2):Since k = 2, if ¢ = 2, then
(gh—1DEZ—-1)>ksorg>n+rn, by
Equation 6. Ifg = landr, < ((k -1+ qk)/Z
then
o= ((k—1D+k)2
=4k -2
>2k+ (k-1 +k)/2
=15 +n.
Finally, if ¢ = 1 and 1, is the largest possible
value it could attain, ie.r, = (k— 1) + gk =
2k —1,thenry =22k — Dandr, + 1, =
2k + (k— 1)+ k, hence iy <7, +7,. In this
case, we get a smooth arithmetical structure
with dy > 1 for each k = 2. Particularly, we get
the structure with
r=(2,2k 4k — 2,2k — 1,4k — 3,4k —
4,---,2,1)
and
d=(k22222,.,272),
as shown in Figure 13, which has length 4k + 1.

2k 1

2k 4k — 3
[ @ ® s *e—0
2 4k — 2 2 1
Figure 13: A smooth arithmetical structure on £, with
dy = 2. We label each vertex v simply by 1,.

Case 3 (1, = 3): In this case,

(gk =D —D 2z (gk - D@) =k,
so by Equation 6, 1y = 1, + 1. Note that
equality only occurs whenr, =3,q = 1,k = 2.
In this case, we get the r vector r = (3,6,9,3),
which is in the same equivalence class as the
arithmetical structure of €, found in Case 1.
Otherwise, (ghk — 1)(r, — 1) > ksor, >, +
1ry.Hence,dy = 1. m

5  Future Work

5.1 Enumeration of Smooth Arithmetical
Structures on &,

Theorem 4.3.2 will be key in the enumeration of

smooth arithmetical structures on &,,.

Particularly, since d; = 1 in all but the one

exceptional family, we have that in all other

smooth structures (d, 1), =19 — 1, — 13,

Vetter, Veritas: Villanova Research Journal, 3, 89-104 (2021)

102



RESEARCH ARTICLE | MATHEMATICS

Once 13,1y, 1, and 1y, have been determined (or
equivalently, once parametersry, 7, k = 2 (so
r,=kn),andg = 1(sor, = (k— 1) + gkr,)
have been chosen), a slight alteration of
Proposition 2.4 in (1) shows that thereis a
unique structure with these values and this
structure has lengthn = 3 + F(ry, 1y ), where F
is the function defined in (Section 3.1; 1).

To investigate this value F(1y, 1p), it will be
helpful to consider the following rescaling of
the r vector. We recall that arithmetical
structures come in equivalence classes and r
vectors that are integer multiples of each other
belong to the same class. Thus, to make things
simpler, we are going to manipulate our r-
vector.

Suppose (d, r) is a smooth arithmetical
structure on &, with d; = 1. Note thatr, =

kry, ty|rp, 1|7, and gcd(rx, ry) = 1.Thus, ¢ =
To

is an integer. Seta new vectorr’' = ¢ - r.

Ty
This gives
; To
y=cr,=—=:a
Ty
' rU
n=cr,=k—=ka
Ty
To
’
r,=Ccr,=—=ih
v YT
ToTp
n=cry=——=ab
Ty

Since r; = 1y — 15, — 13, we get that
r=cr = c(ro—ry—rz) =rp—ry -1
=ab—b—ka.
The fact that ] = cry > 0 implies thatk < b, a
bound that is useful for computational
purposes. Moreover, using Lemma 3.2 in (1), we
get
Fro,m) = F(erp, ) = Frg,11)
= F(abh,ab—b —ka)
= F(ab,ab — (ka + b)).
The key insight in (1) to provide an algorithm to
count all smooth arithmetical structureson D,
was an analysis to the expression F(ab, ab —
a — b) done in (Theorem 3.3; 1). Our
expression here, has an extra parameter k that
satisfies 2 < k < b. It would be interesting to

work on a generalization of the arguments in (1)
to find a similar algorithm that will count the
number of smooth arithmetical structures on
&, with dy = 1. This, together with the one
exceptional family in Theorem 4.2.3 would
provide a full count of all smooth arithmetical
structures on £,,. Theorem 4.2.19 would then
provide a full count of all arithmetical structures
oné&,.
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